Design and control of cable-driven robot for agile handling of parts in a
manufacturing line

Conception et Commande d’un Robot a Cables pour la manipulation dextre de
piéces sur des chaines de production

By : Atal Anil KUMAR
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* Robotic systems =» 4-D tasks (Dirty, Dull, Dumb and Dangerous).

* Robotics =» Key driver of competitiveness and flexibility in large scale

Methodology

manufacturing industries.

* Making things easier for manufacturers =» Precision machining and
assembling to material handling.

* Robots =» Simpler to program, integrate and install.

* Collaborative work environments = Future requirement. ﬁ
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Introduction
State of art

Methodology

Conclusion

To develop a solution to reduce Work-related Musculoskeletal
Disorders (WMSDs) in workers using a Cable-Driven Parallel Robot
(CDPR) which allows interaction of the worker and robot in a safe way.
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* Platform is a rigid body
with 6 Degrees of Freedom
(DoF)

* Consider its inertia

* Interface using C++
* Possibility of integrating
with haptic device ?
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 Parallel Wire Robots (PWRs)- also known as Cable Driven Parallel Robots (CDPRs)

* (Cable-driven parallel robots - special class of parallel mechanisms in which the end-effector is actuated by cables,
Introduction instead of rigid-linked actuators.

winch
State of art

mobile

Methodology plat form

guiding pulley
Results

distal anchor point cable

Conclusion

proximal

machine frame anchor point

Servo motor

gearbox

Fig. 1: An example of a CDPR — IPANEMA robot with its various parts ‘a
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Introduction
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Less moving parts .
actuator location
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Workspace
State of art

Methodology Simple

structure

Results

Conclusion

Easy to
manufacture

Reconfigurable

Location of
attachment points
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Complex
Workspace

To find Only

optllpal positive

tension cable
distribution tensions

Interference
between
cables

Stiffness of
the cables

Complex
kinematics
and
dynamics
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J CDPR with four cables and motors on the moving platform — Not yet
implemented for industrial applications.

» A CDPR with motors on the Moving Platform (MP) and simple anchor
points

» Benefits =» easy to install in a manufacturing line.
» Inertia of the platform =¥ significant role in the stability of the platform.

Q Underactuated system - exciting control challenges

» Internal Dynamics =» MP oscillations, abnormal value of cable forces.

» Control law =» Maintain the stability of the platform.

»Feedback linearization — common approach.

» Implement classical control law =» Input-Output Feedback Linearization.
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Assumption 1: Cable mass is negligible
Assumption 2: Cable is assumed to be taut between points
[X] 4 ° _ T
Introduction M(X)X + C(Xr X)X + G (X) — _] T (1)
State of art m13><3 O3X3] [p] + [ 03><1 ] + [_mg — _]TT (2)
O3x3 Ip |l w X Ipw 031
Methodology
P = [Px: Py, p,]T , the position vector Used for control

Results

W = [Wy, Wy, w,]7, the velocity vector of the orientation

Conclusion

0 = [a, B,y]7, vector of a set of Euler angles

MX)X+NX,X)=-JTt

m = mass of the end-effector

I, = the ertia tensor of the end-effector about point P in the base frame )

g = the gravity acceleration vector

N(X,X) = C(X, X)X + G(X) ﬁ
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Introduction

Cable 4

Cable 1

State of art
Four cables + gravity (virtual

Methodology —» Moving Platform cab]e) = 4 DoF can be
controlled
Results | Centre of Mass location
|
Conclusion |
| | g, gravity (virtual 5t
‘ cable)

1 2 3

4 :
x-axis 2 y-axis

Fig. 2: The CDPR configuration
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* Number of Degrees of Freedom (DoF) =26

Introduction

State of art Number of actuators = 4

Methodology

Underactuated by
a degree of 2!!

Results

Conclusion

Fig. 3: The six DoFs of a rigid body

* DoFs to be controlled = 4: x, y, z and y (rotation about z-axis)

* DoFs that have to be stable for the control to be implemented = 2
* o (rotation about x-axis)

* P (rotation about y-axis) ‘ﬂ
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Done to ensure the cables are tensed.
Applying a minimal current

Power on : By givipg the
________ corresponding motor
. | Pretension | positions
Ground position T |
center of the room
'_ __e_———_—
1 Move |
x= 2.685, y=1.995, z=0 -—==’

Home position ‘ Perform the desired point-to-point

motion using different modes

x= 2.685, y=1.995, 7=0.214

A

_____________ |
Fig. 4: Test setup for performing the experiments ‘ﬂ
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{ \ Pose 1) Calculate cable
Li lengths
Introduction " sl:::zr N lelg.flliaw-—h CDFR [:> Olde |—> 2) Convert to Motor
] d i solver s .
feedback ynamics Velocity position and velocity
U

- J

Methodology
A\
Results Send to
Desired values Used for feedback purpose to motors
Conclusion of acceleration, perform the correction action when
velocity and needed
position =
) 1) Calculate Al
Estimated values <:| Nonlinear <:| 2) Add to initial length <:| Read. tr'notor
ositions
of%,y,2,7 solver to calculate new length )

Fig. 5: Block diagram for implementation of control to perform the experiments a
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Fig. 8: CDPR in the working environment

Fig. 7: Simple attachment points fixed in room (left) and arrangement for
cable guiding in MP (right)
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Fig.9: CDPR in home position

Table 1: Parameters for testing

Room dimension (m) 5.37*3.99 *2.97

0.45*%0.45*0.2
Fig. 10: CDPR top view

Platform dimension (m)

Mass (kg) 23.4 approx.
Inertia (kgm”2) Ixx =0.631 Cable exit to exit points are
Iyy =0.631 different than the MP
dimension

Izz=1.036
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Feedback can be done using motor
position, velocity. No need for additional

Introduction

State of art : * Three different velocities for the MP:
e 0.05m/s

Methodology e 0.1m/s
* 0.2m/s

Results * Translation along z-axis:
. \ Final Positi * Upward motion, 0.5 m (1)
Conclusion e Upward motion, ] m [0.5m (1) + 0.5 m (1)]
0.5m * Up-Down motion, 0.5 m (1) + 0.5 m (|)
Home Position
R R

For translation along z-axis, at
the center of the room:
a=0°
p=0°

x-axis

Fig. 11: Upward motion (0.5 m)
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Only motor

I ositions for control I Only motor
Cab}e fcilrces CaIClllllated I p POSITION jf’ Vvelocities for control I
using the control law I

. [ I VELOCITY
Introduction and feedback MODE
| 1 MODE :
State of art I\ I l
_______ | I
Methodology Cable I l
forces CDPR ODE Position and Motor Motor I
= — . .
Results dynamics solver Orientation positions velocities | !
I
Conclusion |
e e e e e =
Runge-Kutta /
solver (ode45)

otor positions and
velocities for control

INTERPOLATED
POSITION MODE
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Platform is able to reach
desired height in desired
time and maintain its
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Fig. 13: Comparison between estimated and measured cable forces for the test
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ig. 12: Comparison between desired, rebuilt and measured platform

position in z

Final z,,, = 0.714 m,
Final rebuilt z =0.71398 m
Final measured z= 0.700 m

Oscillations are seen in cable forces
during the motion, but, measured
forces are closer to the estimated
forces




UNIVERSITE
DE LORRAINE

LCFC, A

Conception Fabrication Commande

k=5, k=1

Total time for testis 10 s
where, 5 s for the point-to-
point motion and 5 s rest

time

Introduction

State of art

Methodology
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Fig. 15: Comparison between estimated and measured cable forces for the test
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|— Desired z==Rebuilt z=——Measured z\

//
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10 15

Time(s)

Fig. 14: Comparison between desired, rebuilt and measured
platform position in z

Final z;,, = 0.714 m,
Final rebuilt z =0.6998 m
Final measured z= 0.7204 m

Velocity mode =» amplitude of
oscillations are reduced.
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. Slower response time
Introduction
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State of art
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Methodology -
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Fig. 16: Comparison between desired, rebuilt and measured platform
position in z

Force(N)
g

Conclusion

0 5 10 15 2 0 2 s 6 8 10 Finalz, =0.714 m
Time(s) Time(s) . :ies - ° 9
Force in cable 1 Force in cable 4 Final rebuilt z =0.716035 m

Final measured z= 0.7152 m

110

Force (N)
2
Force(N)

All the three modes successfully
| | . | , | | | | validate the control law for the desired
0 5 10 15 20 0 2 4 6 8 10

Time(s) Time(s) point-to-point motion ﬂ

Fig. 17: Comparison between estimated and measured cable forces for the test
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Introduction ——

0.7
State of art t4es=10s

o
»
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Methodology
Convergence time for velocity
mode is better than position
and IPM mode.

Results

Conclusion

Position in z (m)
o
a
I

=
>
I

0.3

Velocity mode: 10 s, Position mode: 12 s, IPM mode: 15 s

0.2 | | |
0 5 10 15

Time(s) r
Fig. 18: Comparison between desired z, and rebuilt z using different modes for v4,, = 0.05m/s a
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Introduction
0,7 oy
State of art 0,6
Methodology | T 0,5
£
. Results g 0,4

2 0,3
Conclusion § & Up and down motion
0,2
0,1
0
0 5 10 15 20 25 30
Time (s)

a IEI Fig. 20: Comparison between desired, rebuilt and measured platform position in z to go up and down ra
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MP =» able to achieve the desired motion with acceptable error.

Three values of the desired velocities (0.05 m/s, 0.1 m/s, 0.2 m/s) =» three different profiles for the
cable forces, but are able to satisfy the necessary behavior for the MP.
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The starting values of cable forces =» Not always the same for each tests.
* Due to pretension, coiling of the cable in the winch

Methodology e Position errors due to measurement

High oscillations in each cable during the start of the trajectory.
* Due to the oscillations already present in the cables when they reach the home position

Conclusion -

0 10 20 30 40 50 60

Time (s)
Fig. 21: Cable force after reaching home position from ground la
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