







Speaker 1 : François Léonard

Speaker 2: Vianney Papot

Main results from PhD student Mohamed Didi Chaoui

Mohamed Didi Chaoui « Contribution to the robust control of a manipulator robot used in grinding ».

PhD thesis of Université de Lorraine, funded by the interreg project "Robotix Academy", 2020.















## **Summary**



- 1 Introduction
- 2 Grinding effector
- 3 Grinding model
- 4 Path planning
- 5 Experimental results
- 6 Conclusion















## Introduction



- Robotization of the process is more profitable (lower costs, less time, better quality)
- Minimize the number of dangerous and tedious tasks assigned to operators :
  - Emission of dust
  - Generation of vibrations and noise
  - Biomechanical stresses















## Introduction



### Grinding issues

- Grinding a workpiece with an irregular surface
- Variation in grinding force
- Presence of vibration
- Deterioration of the surface quality
- Disproportionate damage to grinding tools

What is the right solution to grind a part efficiently and with the best surface results?















## Introduction



### **Objectives**

 Develop a robotic grinding system capable of grinding a part with a controlled depth of cut

Location and measurement

Grinding

Quality control







3D Scanner

Klingspor Fiberscheibe and Dreamstime Photo

















Use of an angle grinder for :







Polishing Cutting

Surfacing

Main application of proposed grinding effector: Surfacing



















Grinding effector

Mohamed Didi Chaoui " Contribution to the robust control of a manipulator robot used in grinding ". PhD thesis of Université de Lorraine, funded by the Interreg project "Robotix Academy", 2020.

















- ■The pneumatic actuator is placed between the robot and the grinder.
- ■The functions of the damper are:
  - Maintain a constant grinding force
  - Reduce vibrations
  - Follow the shape of the workpiece





Grinding configuration in the plane XZ















## **Grinding model**



Grinding model used ( see Persoons et Vanherck)



W. Persoons, P. Vanherck, A Process Model for Robotic Cup Grinding, CIRP Annals, Volume 45, Issue 1, 1996, Pages 319-325

















### New grinding model

Material removal rate:

$$Q_w = V_s S$$

$$S = \left(\frac{d}{\cos\alpha}\right)^{\frac{3}{2}} \sqrt{2R}$$

Force model

$$F_p = K_1 + K_2 S V_S$$



$$F_p = Kd^{\frac{3}{2}} + K_1$$

With K1 and K are constants to be identified, 
$$K = \frac{K_2 V_s \sqrt{2R}}{(cos\alpha)^{\frac{3}{2}}}$$



















## Identification of grinding force model parameters F<sub>p</sub>



















## Identification of grinding force model parameters Fp

Vanherck modified model:

$$F_p = K d^{\alpha} + K_1$$

K=42,5 
$$(m^{3/2}s^{-1})$$
  
 $\alpha$ = 1,5  
 $K_1$ =87 (in  $N$ )



































#### Choice of feed direction





















## Definition of the trajectory points





















## Off-line planning methodology



















## Off-line planning methodology

- The grinding is done in several layers
- The last layer is the finishing layer



#### Perimeter of the grinding wheel



















## Off-line planning methodology



















### Off-line planning methodology

Generation of the pass points from the work piece geometry.

- Calculation of number of passes  $N_p$  and the number of grinding layers  $N_c$
- The intersection planes  $j_i$  are constructed
- Calculation of number of points N for each pass (depends on the precision)
- Interpolation of the points located in the intersection between the planes and the surface of the part

















#### Matlab program



Inputs and outputs of the Matlab program

















### Case study

 Surface grinding grinding depth : D

Fillet grinding radius of the fillet: r



#### 1st grinding step

- Maximum grinding force
- Feed speed: V<sub>s</sub>=cst
- Maximum material removal rate

#### 2<sup>nd</sup> grinding step

- Variable grinding force
- Feed speed : V<sub>s</sub>= variable
- Lower material removal rate

















## Path planning results



Perimeter of the disc in the both grinding steps

Depending the choosen parameters, we can estimate the grinding time.

















## Path planning results



Perimeter of the grinder disc in both steps

1) Fist step (in blue)
Material removal rate is maximum.

- 2) Second step (in red)
- · Improve the surface quality
- · Reduce geometry fault

















#### **Approach**

- A grinding test is composed by the following steps :
  - Scanning of the blank part
  - Path planning and force profile
  - Robotic grinding
  - Scanning of the machined part



















## Blank parts for tests

- Surface grinding tests on a metal sheet
- Fillet grinding tests on a metal prism





Material: steel S235

















#### Identification test

To identify the force model.



















### Case study trajectory























## Filtering and approximation



 $data.zf = data.z \circledast g$ 

Gaussian convolution filter → Separation of component profiles

shortwave component profiles
→ Roughness

long-wave component profiles

→ Corrugation

















## Filtering and approximation

The conjugate gradient method used determines the radius and center of the edge from the mesh.



Section along the x-axis at the edge

















New profil in the direction of

the measure Least square

Regression line

### Calculation of the roughness: R<sub>a</sub>





$$R_a = \frac{1}{l} \int_0^l |Z| dY = \frac{\sum (Aire+) + \sum (Aire-)}{l}$$

- l: Base length (= 8mm on 40mm)
- Z: Position of the surface in relation to the Z axis
- Y: Measuring direction

















### Grinding parameters

Grinding parameters for draft and finishing steps.

| Grinding parameters                      | Draft step | Finishing step |
|------------------------------------------|------------|----------------|
| Feed speed, $V_{\!\scriptscriptstyle S}$ | 75 mm/s    | 225 mm/s       |
| Tilt angle, $lpha$                       | 30°        | 30°            |
| Grinding force, F                        | 150 N      | 150 N          |



Grinding force profil for surface grinding

















## Robotic grinding results



| Quality paramete         | rs               | Values |
|--------------------------|------------------|--------|
| Average perimeter (mm)   | $I_a$            | 16,48  |
| Average surface (mm²)    | Α                | 79,12  |
| Circularity (S.U.)       | $C_{average}$    | 1,09   |
|                          | C <sub>max</sub> | 1,16   |
| Radius (mm)              | r <sub>ave</sub> | 12,78  |
|                          | r <sub>max</sub> | 15,4   |
|                          | r <sub>min</sub> | 11,54  |
| Surface roughness (S.U.) | $R_s$            | 1,02   |



















### Robotic grinding results





|  |                   | R <sub>a</sub> 3,78           | $R_a$            |
|--|-------------------|-------------------------------|------------------|
|  | Roughness (μm)    | R <sub>q</sub> <b>4,57</b>    | R <sub>q</sub>   |
|  |                   | R <sub>z</sub> <b>8,72</b>    | $R_z$            |
|  |                   | A <sub>t</sub> <b>2032,31</b> | ·                |
|  | Surface Roughness | A <sub>n</sub> (mm²) 2000     |                  |
|  |                   | R <sub>s</sub> <b>1,02</b>    | R <sub>s</sub>   |
|  | Corrugation (mm)  | h <sub>max</sub> <b>0,05</b>  | h <sub>max</sub> |
|  |                   | h <sub>moy</sub> <b>0,03</b>  |                  |
|  |                   | Step 12                       | -                |

**Quality parameters** 

Measure width: 40 mm Base lenght (filtering): 8 mm









Drafted surface









## **Synthesis**

- Tests results
  - Robotic grinding is stable
  - No big grinding defect.
- Analysis
  - Surface state is acceptable
  - Process efficency is around 45 %















## **Conclusion**



- Description of the grinding process
- Digital validation
- Path planning
- Experimental validation

Mohamed Didi Chaoui " Contribution to the robust control of a manipulator robot used in grinding ". PhD Thesis of Université de Lorraine, funded by the Interreg project "Robotix Academy", 2020.















## Conclusion



- Consideration of the effect of the robot joint deformation and the gyroscopic effect of the grinding disc
- Consideration of disc wear on the path planning
- Modeling the variation of the grinding wheel profile
- Improved grinding at contact and shrinkage points
- Exploration of different path planning methods.























Speaker 1 : François Léonard

Speaker 2: Vianney Papot

Main results from PhD student Mohamed Didi Chaoui

Mohamed Didi Chaoui « Contribution to the robust control of a manipulator robot used in grinding ».

PhD thesis of Université de Lorraine, funded by the interreg project "Robotix Academy", 2020.













