

Simulation of rigid and soft robots

Robotix Academy Roadshow

Olivier Devigne, Alejandro Cosimo, Olivier Brüls

Multibody and Mechatronic Systems Lab

Department of Aerospace and Mechanical Engineering

University of Liège

Motivation: robot simulator

- Robot simulators are useful for several tasks
 - Trajectory planning
 - Robot cell design
 - Virtual testing
 - ...
- They can also be used as digital twins giving remote information on the cell current status

What can be represented?

Robot

$$\mathbf{M}(\mathbf{q})\ddot{\mathbf{q}} + \mathbf{C}(\mathbf{q}, \dot{\mathbf{q}})\dot{\mathbf{q}} \ + \mathbf{g}(\mathbf{q}) = \boldsymbol{\tau}$$

Geometry and motion

Rigid dynamics

Flexible dynamics

What can be represented?

Robot and its environment

Rigid dynamics

Flexible dynamics

Geometry and motion

Simulation tools focused on geometry, motion and rigid dynamics

Gazebo and Movelt PyBullet Developed by the **computer graphics** community Developed by the **robotics** community **Limited** capabilities for **flexible** dynamics **Physics engine**: PyBullet, ODE, DART,...

Simulation tools focused on flexible dynamics

Simcenter Mecano ANSYS

- Developed by the **computational mechanics** community
- Simulator based on the finite element method
- Frictional contact models are regularized, i.e. replaced by smooth approximations

Development of Odin simulator

Flexible bodies

- Be rigorous in the modeling of highly flexible systems
- Use of a consistent approach for geometric nonlinearities

9

Contact and friction

- Represent non-penetration conditions and stick-slip transitions without regularization
- Use of state-of-the-art nonsmooth solvers

Nonsmooth basics

phase

8

Smooth approximations cannot represent correctly the sticking

Nonsmooth contact modeling

- In a multibody system, bilateral constraints represent the rigidity or the joints and unilateral constraints represent the contact conditions
- Most numerical formulations only verify the constraints at position
 OR velocity level (e.g., Jean-Moreau formulation)
 - → **velocity drift, penetration** of the objects
- Our formulation, combined with the **nonsmooth generalized-\alpha** solver, verifies the constraints at **position**, **velocity** and **acceleration** level

Odin examples: several impacts with friction

Collision of a hollow pyramid of cubes.

Odin examples: soft finger model

Odin examples: soft finger model

Soft finger model interacting with a sphere,

Odin examples: soft finger model

Odin examples: grasping with friction

Simulation of manipulators grasping objects.

Flexibility modeling

- Approach based on the finite element method
 - > A rigid body can be represented as a single node
 - > A flexible body is represented by a mesh
- All equations are formulated in the local frames of the node
- Interesting properties:
 - Invariance of the equations of motion, strain measures,...
 - Reduced nonlinearities

Odin examples: flexible beams

Line contact formulation for flexible beams.

Conclusions and perspectives

Conclusions

- Odin code to be released in open-source in the coming months
- Rigorous treatment of contact and flexibility

Targeted robotics applications

- Soft robot modeling
- Manipulation of flexible objects

